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Abstract

High pressures, in the kilobar range, are now used in liquid chromatography. Basic equations from mechanics are applied to investigat
the stress state in several idealized chromatography tubes, and these stresses are evaluated with respect to the maximum allowable stre
predicted by several methods used in pressure vessel design. An analytical solution is developed for the dimensional changes of idealized tub
subjected to internal pressure, and the analytical solutions used to verify the results from a numerical approximation. Numerical approximation
are then used to explore the effects of the end restraint provided by the end frits. Conclusions are derived regarding the requirements for
safe operation of these high pressure chromatography tubes.
© 2005 Published by Elsevier B.V.
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1. Introduction guestion has implications regarding appropriate pressure lev-
els for the safe use of such columns, while the latter questions
For a variety of reasons that were discussed eddi@i, may have implications relative to changes in the column

a new trend is gaining strength in liquid chromatography. porosity due to volume changes during operation, hence to
Analysts are beginning to use columns packed with small the prediction of column performance when the flow rate
particles, with diameters in the 142n range, that are oper- is adjusted. This work answers these questions. The nota-
ated at high mobile phase velocities, and that can gener-tion used in the development of the expressions for the
ate high efficiencies in short analysis timgs4]. These stress and the deformation of column tubes is provided in
high performance can be achieved only if a high inlet pres- Table 1
sure, of the order of 1-1.5kbar, is applied. Further gains, The problem consists of determining the stresses and
currently actively contemplated, would require the use of strains in the tube used to pack a chromatographic column.
still higher inlet pressures, in the range of several kbar. Table 2lists typical dimensions for several models of such
Therefore, it is useful at this stage to evaluate the result- columns made from stainless steel and silica whible 3
ing stresses in the column tube compared to the yield or lists some typical mechanical properties for these materials.
limit stresses of typical tube materials. It is also in inter- A schematic of a tube is shown Kig. 1, where the ends of
est to determine the effects of these high pressures on thahe tube are closed with frits. If the tube is very long with
actual dimensional changes of the column tube. The first respect to the diameter, and it is assumed to behave in a lin-
ear elastic manner, the principle of superposition is valid.
Thus, the radial deformations due to the pressure acting on
* Corresponding author. Tel.: +1 865 974 0733; fax: +1 865 974 2667. € tube wall can be investigated independently from the axial
E-mail addressguiochon@utk.edu (G. Guiochon). deformations due to the pressure acting on the tube ends, and
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lext,0
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01,02,03
Om
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Oavg
Oy.p.
Oult
Omax
Tmax
U

Uy
Ug

Ud,tension

Kp
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Original tube length

Change in tube length

Tube length after deformation

Change in radius

Distance from the-axis in ther — 6 plane
Original internal radius

External radius after deformation

Original external radius

External radius after deformation

Average radius

Tube thickness

Maximum pressure at the column inlet
Internal equivalent uniform pressure
Poisson’s ratio

Young's modulus

Radial stress

Circumferential stress

Vertical stress

Principle stresses

Mean stress

Deviator stress

Average stress along the tube wall (membrane stress)
Material yield stress

Material ultimate stress

Maximum stress

Maximum shear stress

Total strain energy produced in an element
Energy of volume change per unit of volume
Energy of distortion per unit of volume
Energy of distortion per unit of volume under simple
tension case

Stiffness of the end frit

Stiffness of the tube

Cap —
(End frit) R N

Chromatography
tube ——~

Fig. 1. Schematic of chromatography tube.

form internal pressure, as a pressurized closed vessel, but to
a pressure gradient that can be considered as a first approx-
imation as linear. These stresses will be compared with the

limit stresses or yield stresses. The deformations of the tube

will then be discussed.

It is usually assumed that stainless steel has equal yield
strength in tension and compression. Fused silica, on the
other hand, has a tensile strength that is significantly less than
its compressive strength. Exposed to air, a silica tube would
rapidly lose its strength and become most brittle. Fused sil-

the results superimposed. These two effects are depicted irica tubes used as chromatographic columns fabricated are
Fig. 2, where a uniform pressure throughout the tube has beensheathed with a layer of a cross-linked polymer that prevents
assumed. The stresses induced in a pressurized tube will béts weathering under the influence of atmospheric water and
described. The stresses developed in typical chromatographiensures a long-term stability of the tensile strength of the
columns are different since the column is not subject to a uni- material.

Table 2

Typical tube geometries

Tube ps (MPa) LengthL (mm) Internal radiuss; (mm) External radius,e (mm) Mean radiust, (mm) Thicknesst (mm) rmlt
SS-1 100 100 0.50 1.00 0.75 0.50 15
SS-2 100 100 2.30 3.15 2.73 0.85 3.2
SS-3 100 100 0.50 1.05 0.78 0.55 14
SS-4 100 100 2.69 3.18 2.93 0.48 6.1
SC-1 450 500 0.02 0.18 0.10 0.17 0.6
SC-2 680 500 0.05 0.18 0.12 0.13 0.9
Table 3

Table of assumed tube material properties

Tube Materials Elastic modulus (GPa) Poisson’s ratip ( Tensile strength (MPa) Compressive strength (MPa)
SS-1,2,3,4 Stainless steel 2[8) 0.33 942 942

SC-1,2 Silica 73 a7 4826 (689 N/A

2 Based on the SiO bond strength, the fiber has a theoretical tensile strengt2000 kpsi. In practice the observed tensile strength is considerably lower,
typically 700 kpsi (4826 MPa), due to the presence of small flaws in the bulk and on the surface of tgGilis@en in practical use, the tubes are generally
100% proof tested at 100 kpsi (689 MA#&}].
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whereoy, oy are the radial and tangential stress at distance

r from the axisz o is the stress component in the axial or

z-direction and, re are the initial internal and external radii.
The stress distribution in thedirection is relatively sim-

ple. Suppose the pressure acting on the internal surface of

] l l the end frit isps, the resulting stress along taelirection is
— g 7 Ps g g

uniform at any point in the — 6 plane:
Crossection of the cylindrical tube 2
I Ps 1
z 0; = —r2 — r2 ( C)
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Fig. 2. Axis-symmetric model for the tube with wall and end pressures. As suggested by Timoshenko and GOO({@]‘ the radial
stresso; is always compressive anrg), sometimes referred
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2. Theory to as the hoop stress or circumferential stress, is tensile. The
hoop stressy is greatest at the inner surface of the cylinder,

2.1. Analytical solution for the stresses in a pressured where

tube

(r§+ri2)ps
09 =09gmax= — 5 v

If the tube is long relative to its diameter, and the pressure (3 - riz)
is assumed to be constant along the length of the tube, it can
be assumed that the response of every section along the Iengtn1
is the same, and that all deformations act in a plane normal
to the axis of the tube. This is referred to as the plane strain
condition, and the stress components in thiso plane are
shown inFig. 3, where the — 6 plane is normal to the-axis

()

This maximum valuey maxis always numerically greater

an the internal pressumg but should diminish towards

ps asre increases. Regardless of the thickness of the tube,
ogmax Can never be less tham, andoy is the critical stress

to investigate in a pressurized tube.

The three stress components at the inner surface of the

of the tube. ; .
column (radiusin o) are principal stresses:
2.1.1. Stresses in the-ré plane r2ps r2ps
From theory of elasticity, the cylinder subjected toaninter- 7+ = % = 2~ 2 + 22 om+ Os (32)
nal pressures, Fig. 3, results in the following components
"izps
O’Z:UZZﬁZO—m (3b)
rg — 1
2 2
rps rep
03 =0, = 2' 5~ 2e S2=Um—Us (3c)
rg — 1 re —

whereo1, o2, o3 are the major, the intermediate, and the
minor principal stresses, respectively, the mean stress and

o4 is the deviator stress. The mean stress and the deviator
stresses can be re-written as:

2
i Ps
Om = h (4a)
re — 1
2
r
os = 261’5 . (4b)
Fig. 3. Stress components on cross-section of the tub® (plane). e =1
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Fig. 4. Circumferential stress in thick- and thin-walled tubes.

2.1.2. Stress distributions in thick-walled and ally expressed as some fraction of the yield stress. In order
thin-walled tubes to determine the allowable design stress for multi-axial stress
The distributions of the circumferential stresg)across conditions, several theories of failure have been developed.
the wall of a thick- and thin-walled tubes are depicted in Their purpose is to estimate when failure will occur under the
Fig. 4. Because the inside and outside radii of the thin-walled action of combined stresses on the basis of data obtained from
tube are nearly the samé&ig. 4b), the difference in the  simple tension or compression tests. Failure of the tube refers
stresses at the inside and outside radii are not as great ato either yielding or actual rupture of the material, whichever
that for a thick-walled tubeHjg. 4a). In the notation used  occurs first.
for pressure vessel analysis, the circumferential stress in a There are numerous theories to predict the state of stress at
thin-walled tube is often taken as the average of the inside failure or the limit stress, among which three theories that are
and outside values ofy, and is referred to as the membrane most commonly used in pressure vessel design to assure that

stress. the operating pressures are safe with respectto the anticipated
Thus, the circumferential stress in the thin-walled tube can stresses at failure. These theories consider both the combined
be calculated by average stress as: state of stress and the uniaxial stress state. In this section,
the application of these theories to investigate the service
PsI'm . . .
Oavg = (5) pressures in chromatography tubes will be discussed.

Eventhoughthe pressures in these tubes are high, it will be
whererm = (re+r)/2 is the average radius of the tube, and  shown subsequently that the dimensional changes are small
is the thickness of the tube wall. Although there is no uni- and as such, that the energy release upon failure would be
versally accepted division between thin- and thick-walled small and the consequences of failure be minimal (besides
vessels, the ASME pressure vessel code suggests that tubete loss of the experimental data involved).
with rp/t > 10 can be treated as thin-walled tudé$. As
indicated inTable 2 the typical chromatography tubes con-  2.2.1. “Maximum stress” or Rankine theory
sidered here do not meet this criteria, simg# is less than According to this theory, the failure of the tube is assumed
10. Therefore, these typical tubes would be considered toto occur when the maximum principal stress reaches the
be thick-walled, where the maximum stress occurs at the yjeld stress in simple tensiony = oy p. As discussed above,
inside radius and diminishes across the thickness, as shown iffor typical chromatographic columns, the maximum stress
Fig. 4a. The following discussion of chromatographic column  should be calculated as in a thick-walled tube according to
tube failure will be based on the thick-walled tube assump- Eq. (3a) Thus, for a given internal pressure, the following

tion. inequality should be maintained:
2.2. Failure theories for pressured tubes rizps réps
L. p GmaX:Ul=Gm+US=r2_r2+r2_r2_ay'p' (661)
e 1 e 1

The strength of most materials, particularly metals, is typ-
ically determined in a simple uniaxial tension test, where the
strength is often defined as the yield stresg, at which oy.p.(r2 —r?)
the deformations are no longer recoverable, or alternately in Ps-Rankine< — —>——5——
terms of the ultimate stress;, which is the stress corre-
sponding to the ultimate strength. When tubes or pressure The maximum stress theory is often appropriate for mate-
vessels are designed for some internal pressure, the resultingials that fail in a brittle manner, or those for which the
stress state is compared with stress at failure, which is usu-strength in tension and compression are vastly diffefgnt

and the maximum internal pressure inside the tube is:

6b
ré~|—ri2 ( )
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This may be the case for chromatographic tubes made of sil-c2 =03=0 in Eq.(9) which gives
ica, which may fail in a brittle manner and has different yield

. . . 1+
strengths in compression and tensidalgle 3. Ud.tension= 3—Eg'3.p. (10)
2.2.2. “Maximum shear stress” or Tresca theory This theory has been widely used in pressure vessel design

This theory postulates that yielding in a body subject to to assure that the inner bore of the vessel remains elastic,
combined stresses will occur when the maximum shear stresr below yield. In practice, the distortion energy stress is
becomes equal to the maximum shear stress at yield in a sim<calculated and compared to the yield strength of the tube
ple tension test, which is the yield stresg, . The maximum material. For the chromatography tube, substitution of Eq.
shear stress in the tube is equal to one-half the difference of(3) into the above E(9) yields:
the maximum and the minimum principal stress; thus, the

. . . . 1 1
maximum shear stress in the chromatographic tube is: Ug = %[032 + 02 4 (205)?] = ;“ag (11)
— — 2 . . . .
= 01 : o3 _ 09 B o _ ;eps2 < % (7a) To limit the distortion energy in Eq11) to values less

rg — 1 than the yield stress in simple tension, given in 8d)), we

. . . o must havdJq<U ion OF:
and the corresponding maximum internal pressure inside the d=Vdtension

- 5
tube is: _ pe oyp. 1
2 2 Os= 55 = (12a)
oyp.(rg —r)) re — T 3

(7b)

Ps_Tresca= 2,2
e The corresponding maximum pressure in the tube is:

For ductile materials such as steel, aluminum, and brass, > o
) . . ) oy.p.(re —rf)
and those materials for which the tensile and compressive pg o0 mises < ——————
strength are the same, the maximum shear stress theory 3ri2
may give better agreement with experimental results than
the “maximum stress” theorjp—8]. Thus, this might be an
appropriate theory for stainless steel chromatographic tube

(12b)

2.2.4. Application of the failure theory to the tubes of
Schromatographic columns

(Table 3. For the design of pressurized tubes and vessels, the dimen-
) ] ) sions are selected such that the relevant stress in the vessel

2.2.3. “Maximum distortion energy” or von is below the stress at yield by a specified margin of safety,

Mises-Hencky theory which is commonly presented as a factor of safety:

The maximum distortion energy, also known as the maxi-

mum octahedral shear stress theory, provides somewhat morg.. __ Stress or pressure at failure> (13)

accurate results that the maximum shear stress tH&pry " stress or pressure under service

This theory assumes that the total strain can be resolved into . -

two parts: Typically, larger factors of safety are utilized to reflect a

greater uncertainty in the service pressure, the material prop-
e The strain energy due to deformation in uniform tension erties, the theory of failure or in cases when the consequence

or compression. of failure is significantTable 4summarizes the three yield
¢ The strain energy due to distortion or change in shape of theories presented above, references the applicable section
the unit volume. in the ASTM pressure vessel code with the recommended
) ) factor of safety[7]. Table 4also indicates the expression for
This can be written as: the maximum internal pressure as a function of yield stress
U= Uy + Uqg ®) and tube geometry. Note that as the complexity and reliability

of the failure theory increases (Rankine theory versus Tresca
where Uy is the energy of volume change per unit of vol- theory versus von Mises theory), the recommended factor of
ume, andJq is the energy of distortion per unit of volume. safety decreases.
Itis further assumed that failure can be attributed only to the
distortion strain energy. The calculationldf is: 2.3. Analytical solution for radial and axial

144 deformations

6E An analytical solution for the dimensional changes in a

According to this theory, yielding begins when the dis- chromatography column was derived earlier, based on the
tortion energy reaches the value of the distortion energy atassumption of linear elasticity, and the assumption that the
the yield point in a simple tension test. In a simple tension- tubeislongwith respectto the diameter such that the effects of
test, the yield point is obtained by substituting=oy.p., and the ends are negligible on the deformatifitis The solution

o [(o1— 02)% + (02 — 03)* + (03— 01)]  (9)
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Table 4
Summary of failure theories and maximum internal pressure
Basis Maximum internal Equation ASME code Factor of safety
ressure section
Theory of failure Material property P Psmax
2_,2
Maximum stress or Maximum stress in wall thickness %ay,p, (6) Section VIII-1 4
Rankine theory reaches material tensile strength e pressure vessels
2_,2
Maximum shear stress  Average shear stress in wall thickness % ”VT" (@) Section VIII-2 3
or Tresca theory reaches material ultimate shear stress ~ ° Pressure Vessels
2_.2 .
Distortion energy or Material yield strength first reached rerz" "y—g (12) Section VIII-3 15
von Mises-Hencky throughout wall thickness ¢ pressure vessels
theory
assumes the superlmposmon of the axial f_;lnd r_gdlal deforma- ,o, B Arext 1 2riio Ds 1
tions due to the internal pressure as depicteBliin 5. The =1+ =it o5 (14c)
Text0 Text0 Text0 ~ *in,0

assumed boundary conditions lead to a simple 2D model for
the free end tube showniifig. 6. Because changesinthetube  The glossary of the symbols used is givefable 1 This

density due to the pressure can be neglected, and an axial (0go|ytion can be somewhat simplified when written in terms

a radial) expansion is accompanied by a radial (or an axial) of the notation from engineering mechanicgsis
constriction, the relative dimensional changes were obtained

as|[2]: Lo 72
, AL =215 (1 o) (15a)
L AL (1= 21)rin 0 ps Erg—r
— = =1+ B R b (14a)
Lo Lo "ext0 ~ ’in,0 E r2ps[r2(L+ w) + r2(1 — w)]

. . 2 — )2 Ar =128 15b
r|_n —14 A}"m — 14 [(l + M)rén’0 + (J; l’l’)r”‘]’O] p_s I'E(I"g _ r|2) ( )
¥in,0 Tin,0 Text0 — Tin.0 E

(14b) The systems of Egs. (14) and (15) are equivalent.
v |
p.

ol |
original deformed l

. ~ shape ]
shape T—1-% _1 p / [7 4
deformed V 4 L. ’ ?
% V] original ¥ /
shape 7 4 7
P 4 4 I 4
" 5 shape Y 9
a 4 L 2 2 b
7 ’ 4 4
7 ’ 4 4
4 g 4 /
4 7 % ’
1 7 9o
9 % é %
w =0 -1-G5 | 19,79,
. N — s,
L L=
are, _’— Are, ‘_J ’
a5 ar, .
z Yz
(a) Deformation caused by side pressure (b) Deformation caused by end pressure

Fig. 5. Superposition of radial and axial deformations in free end tube. Deformation caused by (a) side pressure and (b) end pressure.
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Fig. 6. Two-dimensional axis-symmetric model of the free end tube.

The analytical solution is based on a simplistic model for
the tube, one for which the cylinder is of infinite length or the
deformations are not affected by the end restraint. As shown
in Fig. 1, an actual chromatography column is restrained by
the end frits which tend to make the tube behave as if the

ends of the tube are thicker than the tube. The actual end
restraint depends on the stiffness of the cap and union system

used in the HPLC instrument. An analytical solution does not
exist for more realistic end conditions. However, numerical

approximations such as the finite element method can be used

to determine the deformation under such end conditions.

2.4. Finite element solution for radial and axial
deformations

More realistic boundary or end conditions can be inves-
tigated using numerical approximations such as the finite

element method. The degree of end restraint provided by the

frits can be considered to be bound by two limit conditions:

(@) The free end case investigated above by the analytical

solution, which provides the lower bound to the degree
of rigidity of end restraint.

(b) The completely fixed end restraint, which provides an
upper bound to the degree of rigidity of end restraint.

Actual chromatography tubes would have end condi-

F. Chen et al. / J. Chromatogr. A 1083 (2005) 68—79
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(a) free end (b) very rigid end (c) intermediate end

Fig. 7. Three conditions of end restraint (a) upper bound solution, (b) lower
bound solution and (c) intermediate assumed condition.

cases close to the second one due to the size and stiff-
ness of the unions generally used to connect the column
to the instrumentFig. 7 illustrates schematically the free
end, the fully retrained or very rigid end, and the interme-
diate end restraint conditions. Each of these end restraints
can be investigated by the finite element method. The actual
finite element modelRig. 8) used an axis-symmetry mesh
consisting of around 400 elements along one half of the
100 mm length, and two to four elements across the tube
thickness, where the roller supports at sections A and B
correspond to a line of symmetry at the midpoint of the
tube.

2.4.1. Free column end (no end restraint)

A finite element model for the free end conditidfid. 8;
not to scale), was developed using the commercial finite ele-
ment code ABAQUS 6.49]. Because the end conditions are
the same as in the analytical solution, the results should be
comparable.

50 mm (Half length, not to scale)

ARhThHIHHmNm
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N

tions that lie somewhere between these two bounds, in mostFig. 8. Axis-symmetric finite element mesh for one-half the free end tube.
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Flg 9. Axis-symmetric finite element mesh for one-half the rigid-end tube. F|g 10. Axis_symmetric finite element mesh for one-half the tube with a
cap.

The axial stress in the tube is the same as in the analytical2.4.3. Hindered column end (intermediate end restraint)

solution and Here we assume that the tube end is connected to an end
cap that is not rigid enough to be considered as completely
, riz un-deformable. Calculations were made in the (arbitrary but
Pe = ﬁps (16) reasonable) case in which the stiffness of both the tube and the

cap are equalkp/K=1). This boundary condition is illus-

The analysis of the free end tube was also performed rated inFig. 10
with a linear variation of radial pressure, corresponding to
the actual condition in a chromatographic tube in which the 2.4.4. Comments
mobile phase flows at a constant flow rate and a pressure gra- Because tubes used to pack chromatographic columns are
dient takes place across the length of the tube. An analyticalVery long and thin, with a very large aspect ratior¢, typ-
solution for this loading case does not exist, but the numeri- ically 20-100), the boundary conditions at the tube end do
cal solution can be easily obtained by changing the uniform not affect much its deformation at the center of the tube. This
internal pressurgs, Fig. 8 to alinearly varying pressure with ~ result can be explained by a straightforward application of
a maximum value ops and a minimum value of 0. Because the principle of Saint-Venant. The system of forces at the end

the loading is no longer symmetrical, the entire length of the Of the tube is a balanced one. It produces a local bending
tube should be modeled. that dies out rapidly as the distance alongzfais from the

restrained end increasgs.
Even though the analytical solution for a tube having
2.4.2. Rigid column end—(complete end restraint) free end (see analytical Eq44a)—(14c)pr (15a) and (158)

In the case of the complete end restraint, it is assumed thatneglects the rigidity of the column end, it can be used with
the rigidity of the end plug is much larger than that of the tube sufficient accuracy to predict the deformation of chromatog-
itself, and that no relative displacement takes place betweenraphy tubes. It will be shown that it gives results that match
the tube end and the plug. Thus, the end of the tube is fixedwell with those of the numerical solution obtained via finite
in the radial direction, such that there is no radius change andelement analysis, except in the regions close to the end
no rotation angle in the tube end but that the tube remainsrestraint.
free to expand in the-direction (the end unions connect the
column to fine connecting tubes which can accommodate
freely any axial deformation of the column). There is no ana- 3. Results and discussion
lytical solution available in this case but the finite element
can easily be carried out, using a quarter axis-symmetrical, In the cases investigated here, it was assumed that the
two-dimensional modekig. 9. internal pressur® was uniform along the length of the tube
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Table 5
Stress components at the inner radius of typical chromatography tubes

Tube Principal stresses (MPa) Stress of interest (MPa)
o1 o2 03 Rankine &g max) Tresca tmax) von Mises 6s)

SS-1 1667 333 —1000 1667 1333 333

SS-2 3284 1142 —1000 3284 2142 1142

SS-3 1587 293 —1000 1587 1293 293

SS-4 6120 2560 —1000 6120 3560 2560

SC-1 4563 31 —4500 4563 4531 31

SC-2 7937 569 —6800 7937 7369 569

Table 6

Calculated maximum internal pressure and factor of safety for typical tubes according to different theories of failure

Tube Maximum internal pressure (MPa) Factor of safety
Ps_Rankine Ps_Tresca Ps.von Mises FSRankine (4)* FSTresca(?’)* FSion Mises (1-5)*

SS-1 565 353 1630 .65 353 1630
SS-2 287 220 476 .87 220 476
SS-3 594 364 1850 .94 364 1850
SS-4 154 132 212 .54 132 212
SC-1 4760 2400 398000 BD 532 88500
SC-2 4130 2230 33300 .@8 327 4900

* Recommended value frofi].

to facilitate the solution. In practice, the energy loss across tion (or conservative estimation) of the tube deformations.
the tube length results in linear pressure gradient fRaggk However, the effect of the linearly varying pressure may be
(which is in the kbar range) at the column inlet to O at the more significant in an analysis of the stresses in the region
outlet. The numerical analysis was repeated to investigate thenear the connection between the column end and the frit, but
effect of the pressure gradient with a pressur@ef P max this analysis requires details of the frit and geometry of the
at the column inlet and a pressure of O at the outlet. The connection and is beyond the scope of this paper.

results indicate that the maximum radial deformatiam, Thus, the comparative analysis of the stresses and defor-
which occurs at the middle portion of the column, and length mations in chromatographic tubes with both a uniform pres-
change of the tube\L, are both smaller in the case ofthe lin- sure and a linear pressure gradient across the column shows
early varying pressure than with the uniform pressure. Thus, that the uniform pressure is the worst case, Accordingly, this
the uniform pressure distribution results in an overestima- case will be considered for the remainder of the paper.

Table 7
Relative radius and length change of the chromatography tube (analytical, free end case)
Tube Deformation Strain

Ari (mm) Are (Mmm) AL (mm) Arilr; Arelre AL/L
SS-1 0000472 0000278 0005567 0000944 0000278 0000056
SS-2 0003722 0002998 0019070 0001618 0000952 0000191
SS-3 0000455 0000257 0004897 0000911 0000244 0000049
SS-4 0007540 0006775 0042753 0002800 0002134 0000428
SC-1 0000109 0000014 0014226 0007291 0000079 0000028
SC-2 0000616 0000257 0257021 0012324 0001425 0000514
Table 8

Computed deformation at points A— €i¢. 8) from analytical and FE solutions of the free end tube

Tube Internal radius change, point A (mm) External radius change, point B (mm) Length change, point C (mm)
Analytical FEM Analytical FEM Analytical FEM
SS-1 4.7216% 104 4.72167x 104 2.77833x 104 2.77833x 104 5.56667x 103 5.56667x 103
SS-2 3.7220% 1073 3.72209x 1073 2.99817x 1073 2.99817x 1073 1.90703x 102 1.90703x 102
SS-3 455464 10~ 4.55464x 104 2.56649x 104 2.56649x 104 4.89736x 1073 4.89736x 1073
SS-4 7.5395 103 7.53950x 103 6.77478x 1073 6.77478x 1073 4.27526x 1072 4.27526x 1072
Sc-1 1.09368& 104 1.09368x 104 1.41996x 10~5 1.41996x 10°3 1.42255x 10~2 1.42255x 102
SC-2 6.16196< 104 6.16196x 104 2.56554x 10~ 2.56554x 104 2.57021x 101 2.57021x 1071
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3.1. Computed stresses in typical chromatographic
columns

As indicated inTable 2 it is assumed that the stainless
steel tubes are subjected to an internal pressure of around
100 MPa, while the silica tubes are subjected to internal pres-
sures of 450 and 680 MPaable 5presents the calculated
principal stresses and stress componerts{x), (Tmax) and
(02) inside each tube using Eqg. (1), where positive stresses
indicate tension. It is noteworthy that the maximum tensile
stress in tube SS-4 has a valueogf=612.0 MPa which is
more than six times the internal pressure. This tube is the
thinnest withry,/t=6.1 which is approaching the,/t=10
for “thin” tubes. Tube SS-2rf,/t=3.2) has ay more than
three times the internal pressure.

3.2. Comparison of the maximum allowable internal
pressure and the factor of safety according to different
theories of failure

The designs of most structures are based on formu-
las that are known to be approximate and use materials
whose mechanical properties cover a relative band, due to
the uncertain reproducibility of the properties of the sam-
ple and their environmental behavior not being thoroughly
known. The use of factors of safety is a trade-off means
of establishing equal reliability and safety by assigning to
a single parameter varying degrees of quality assurance.
This is the basis upon which many codes and standards are
based.

The ASME pressure vessel code has several factors of
safety based on different theories of failure, but with com-
parable safety and reliability. It permits lowering the factor
of safety as the degree of quality insurance is successively
increased or more refined failure theories are adopted as in
Table 4

The stress components for each of the six chromatography
tubes defined ifable 2were calculated iffable 5 based on
the three failure theories summarizedable 4 For purpose
of comparison, the factor of safety was defined as:

S maximum internal pressure at failure
N assumed service pressure

17)

Table 6reports for each of the six tubes considered, the
computed maximum allowable internal pressure according to
the three failure theorie§éble 4. Also shown is the com-
puted FS according to E(L6)for each of the failure theories.
The yield stress for the materials was taken aEaible 3 For
the silica tubes, the maximum pressures are based on the ten-
sile strength of the silica. It can be seen that the Rankine
and Tresca theories give similar results, while the von Mises
theory provides much larger maximum internal pressures (or
smaller factors of safety). Tubes SS-2 and SS-4, which have
higherry/t ratios (thinner tubes), are operating at the lowest
factor of safety.

Table 9

Comparison of deformation at points A-C between free &gl @), intermediate endig. 9) and restricted end~{g. 10, FE solution

Tube

Length change, point C (mm)

External radius change, point B (mm)

Internal radius change, point A (mm)

Restricted end

5.59264x 1073
2.10276x 102
5.21146x 1073
4.51170x 1072
1.42895x 102
2.58142x 101

Intermediate end

5.45154x 1073
1.64877x 1072
4.79530x 103

4.07906x 102

Free end

5.56667x 103
1.90703x 1072
4.89736x 1073
4.27526x 1072
1.42255x 1072
2.57021x 101

Restricted end

2.77832x 1074
3.00361x 1073
2.56641x 104
6.77480x 1073
1.41996x 10~
2.56554x 104

Intermediate end

2.77832x 1074
2.99867x 1073
2.56649x 104
6.76762x 103
1.41996x 10~
2.56554x 1074

Free end
2.77833x 1074
2.99817x 1073
2.56650x 104
6.77478x 1073
1.41996x 10~
2.56554x 104

Restricted end

4.72167x 104
3.72259x 103
4.55460x 104
7.53951x 103
1.09368x 104
6.16196x 104

Intermediate end

4.72165x 104
3.72265x 1073
4.55463x 104
7.53231x 103
1.09368x 10~4
6.16196x 104

Free end

4.7216% 1074
3.7220% 103

S-1
S-2
S-3
S-4

S
S
S
S

4.55464 104
7.5395( 103

1.42266x 1072
2.57156x 1071

1.09368 10~*
6.16196< 10~*

SC-1
S

C-2

7
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Axial strain vs.r /t

0.0006
SC-2
0.0005
0.0004 —e—Free end (SS)
5 ~&~Intermediate end (SS)
z 0.0003 —a—Restricted end (SS)
.5 -@—Free end (SC)
< ~8- Intermediate end (SC)
0.0002 —a— Restricted end (SC)
0.0001
0 . . . . . .
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
o/t
Fig. 11. Effect ofr/t to axial strain of the tubes.
3.3. Computed dimensional change in typical Table 9compares the deformation at points A—C calcu-
chromography columns lated for the boundary conditions with restricted, intermedi-

ate and free ends for the six tubes. The results show that the

Table 7lists the computed radial and length change for end restriction does not affect significantly either the defor-
each of the tubes from the analytical solution (free end condi- mation of the tube radius at the mid point of the column or its
tion). The maximum internal radial change does not exceedlength change. Note, however, that the end restriction causes
0.01 mm (maximum value 0.0075mm for SS-4) while the both a slight increase in the length expansion (about 5%)
maximum length change occurs in SC-2 and is 0.257 mm and a slight decrease in the radius charkgg. 11 presents
due to the relative long length of this tube. The maximum the relative axial strainAL/L) for different ry/t ratio and
relative internal radial strainXr;/r;) is 0.012324, the maxi-  Fig. 12 the relative internal 4&ri/r;) and external Are/re)
mum relative external radial strailh(e/re) is 0.001425, and  radial strains for differentyy/t ratio of the four stainless
the maximum relative axial strail\(/L) is 0.000514. Itcan  steel and two silica tubes. As shown in these two figures, for
be concluded that the changes in radius and length of thethe four stainless steel tubes (which have the same length),
tubes are very small at points A, B, andEd. 8). under equal internal pressure, both the axial and the radial

Table 8compares the radial and axial deformations for the strain increase with increasimg/t ratio. Combined with the
free end conditions of the chromatographic columns evalu- zero change in the radii at both ends, these effects com-
ated with both the analytical and the finite element analysis. bine to keep constant the volume occupied by the metal.
The results are in excellentagreement (the relative differenceslt can be concluded that the analytical solution, although

are less than & 1079). it is approximate in the chromatographic tube case, can be
Internal radial strain vs. r/t External radial strain vs. r/t
0.014 0.0025 — TS
SC-2 -o~ Intermediate end (SS) SS-4
_ oo T o G5 - 000 > Restricted end (SS) s
'S ~®~ Intermediate end (SS) ‘=S : =&~ Free end (SC)
= 0.01 / - Restricted end (SS) = ~0- Intermediate end (SC)
= —& Free end (SC) — -0= Restricted end (SC)
= 0.008 d =0~ Intermediate end (SC) "g 0-0015 SC-2
S SC-1 -0~ Restricted end (SC) S
g 0006 £ 0001
g 3 $8-2
£ 0004 — E s
oy s 0.0005
0.002 S - /
- sc-if ss-3% 35
0 SS- 0 .
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
l.m/t l‘m/[

Fig. 12. Effect ofr/t to internal and external radial strain of the tubes.
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used to accurately predict the dimensional changes in thesevarious levels of end restraint. It is suggested that because
tubes. most chromatographic tubes are very long with respect to

Because the deformations and strains in all of the tubestheir diameter, the effects of end restraint are very local-
are small, the energy stored in the deforaiation is also veryized, and the expressions for free end tubes are appropriate.
small. The energy stored by compression of the liquid is also It is also shown that the deformations in typical chromatog-
relatively small[1]. Thus, if a tube was to fail, The released raphy columns under the assumed operating pressures are
strain energy would be moderate and of little consequence. small.

4. Conclusions References

The stress components inside the wall of typical chro- [1] M. Martin, G. Guiochon, J. Chromatogr., in press.
matographic column tubes were investigated through the [2] F. Gritti, M. Martin, G. Guiochon, J. Chromatogr. A 1070 (2005)
principles of engineering mechanics, and the relevant stress __ 13

" . . - [3] J.S. Mellors, J.W. Jorgenson, Anal. Chem. 76 (2004) 5441.

quantities calculated for typical stalnles_s steel _and silica [4] Y. Shen, R. Zhang, R.J. Moore, J. Kim, T.O. Metz, K.K. Hixson, R.
tubes. These stresses were compared with the yield stresses ~ zhao, E.A. Livesay, H.R. Udseth, R.D. Smith, Anal. Chem., 77, in
based on three well-known failure theories. The calculated press.
stresses are expressed in terms of a safety factor, or ratio of [5] S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, McGraw-Hill,
the maximum internal pressure to service pressure. Based _ New York, NY, 1970. .

. . . . . [6] D.R. Moss, Pressure Vessel Design Manual: lllustrated Procedures
on the typlcal tube dlmeQS|ons and operating p'rgssures iden- for Solving Major Pressure Vessel Design Problems, Elsevier/Gulf
tified here, both the stainless steel and the silica tubes are  professional Publication, Amsterdam Boston, 2004.
safe when the von Mises failure theory is assumed. When [7] D.M. Fryer, J.F. Harvey, High Pressure Vessels, Chapman & Hall:
the less rigorous Rankine and Tresca failure theories are International Thomson Publication/Thomson Science, New York,
used, the desired levels of safety are not achieved with the __ 1998

lected ti b hich fail Id b [8] R.V. Juvinall, Engineering Considerations of Stress, Strain and
selected operating pressures above wnicn ralure wou e Strength, McGraw-Hill, New York, 1967.

expected_. _ _ _ _ [9] ABAQUS 6.4 Habbitt, Karlsson and Sorensen Inc., Rhode Island,
An existing analytical solution for the deformations of 2004.

chromatographic tubes was reviewed and presented in a sim{10] Polymicro Technologies, Mechanical Stress and Fiber Strength,

plified form. Numerical approximations by the finite element hitp-/Mww.polymicro.com/catalog(25.htm 2004.

. . . . [11] Polymicro Technologies, Thick Wall Flexible Fused Silica Capillary
method are shown to agree with the analytical solution. This Tubing, TSP: Standard Polyimide Coatinttp:/www.polymicro.

numerical solution was then used to explore the effect of com/products/capillarytubing/productapillarytubingtsp.htm 2004.


http://www.polymicro.com/catak
http://www.polymicro.com/catalog/2_25.htm
http://www.polymicro.com/catalog/2_25.htm

	Stress distribution and dimensional changes in chromatographic columns
	Introduction
	Theory
	Analytical solution for the stresses in a pressured tube
	Stresses in the r-theta plane
	Stress distributions in thick-walled and thin-walled tubes

	Failure theories for pressured tubes
	"Maximum stress" or Rankine theory
	"Maximum shear stress" or Tresca theory
	"Maximum distortion energy" or von Mises-Hencky theory
	Application of the failure theory to the tubes of chromatographic columns

	Analytical solution for radial and axial deformations
	Finite element solution for radial and axial deformations
	Free column end (no end restraint)
	Rigid column end-(complete end restraint)
	Hindered column end (intermediate end restraint)
	Comments


	Results and discussion
	Computed stresses in typical chromatographic columns
	Comparison of the maximum allowable internal pressure and the factor of safety according to different theories of failure
	Computed dimensional change in typical chromography columns

	Conclusions
	References


