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Abstract

High pressures, in the kilobar range, are now used in liquid chromatography. Basic equations from mechanics are applied to investigate
the stress state in several idealized chromatography tubes, and these stresses are evaluated with respect to the maximum allowable stresses
predicted by several methods used in pressure vessel design. An analytical solution is developed for the dimensional changes of idealized tubes
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ubjected to internal pressure, and the analytical solutions used to verify the results from a numerical approximation. Numerical appr
re then used to explore the effects of the end restraint provided by the end frits. Conclusions are derived regarding the require
afe operation of these high pressure chromatography tubes.
2005 Published by Elsevier B.V.
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. Introduction

For a variety of reasons that were discussed earlier[1,2],
new trend is gaining strength in liquid chromatography.

nalysts are beginning to use columns packed with small
articles, with diameters in the 1–2�m range, that are oper-
ted at high mobile phase velocities, and that can gener-
te high efficiencies in short analysis times[3,4]. These
igh performance can be achieved only if a high inlet pres-
ure, of the order of 1–1.5 kbar, is applied. Further gains,
urrently actively contemplated, would require the use of
till higher inlet pressures, in the range of several kbar.
herefore, it is useful at this stage to evaluate the result-

ng stresses in the column tube compared to the yield or
imit stresses of typical tube materials. It is also in inter-
st to determine the effects of these high pressures on the
ctual dimensional changes of the column tube. The first

∗ Corresponding author. Tel.: +1 865 974 0733; fax: +1 865 974 2667.
E-mail address:guiochon@utk.edu (G. Guiochon).

question has implications regarding appropriate pressur
els for the safe use of such columns, while the latter ques
may have implications relative to changes in the col
porosity due to volume changes during operation, hen
the prediction of column performance when the flow
is adjusted. This work answers these questions. The
tion used in the development of the expressions for
stress and the deformation of column tubes is provide
Table 1.

The problem consists of determining the stresses
strains in the tube used to pack a chromatographic col
Table 2lists typical dimensions for several models of s
columns made from stainless steel and silica whileTable 3
lists some typical mechanical properties for these mate
A schematic of a tube is shown inFig. 1, where the ends o
the tube are closed with frits. If the tube is very long w
respect to the diameter, and it is assumed to behave in
ear elastic manner, the principle of superposition is v
Thus, the radial deformations due to the pressure actin
the tube wall can be investigated independently from the
deformations due to the pressure acting on the tube end
021-9673/$ – see front matter © 2005 Published by Elsevier B.V.
oi:10.1016/j.chroma.2005.06.004
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Table 1
Table of notation

L0 Original tube length
�L Change in tube length
L Tube length after deformation
�r Change in radius
r Distance from thez-axis in ther − θ plane
r in,0 Original internal radius
r in External radius after deformation
rext,0 Original external radius
rext External radius after deformation
rm Average radius
t Tube thickness
Pmax Maximum pressure at the column inlet
ps Internal equivalent uniform pressure
µ Poisson’s ratio
E Young’s modulus
σr Radial stress
σθ Circumferential stress
σz Vertical stress
σ1, σ2, σ3 Principle stresses
σm Mean stress
σs Deviator stress
σavg Average stress along the tube wall (membrane stress)
σy.p. Material yield stress
σult Material ultimate stress
σmax Maximum stress
τmax Maximum shear stress
U Total strain energy produced in an element
Uv Energy of volume change per unit of volume
Ud Energy of distortion per unit of volume
Ud,tension Energy of distortion per unit of volume under simple

tension case
Kp Stiffness of the end frit
Kt Stiffness of the tube

the results superimposed. These two effects are depicted in
Fig. 2, where a uniform pressure throughout the tube has been
assumed. The stresses induced in a pressurized tube will be
described. The stresses developed in typical chromatographic
columns are different since the column is not subject to a uni-

Fig. 1. Schematic of chromatography tube.

form internal pressure, as a pressurized closed vessel, but to
a pressure gradient that can be considered as a first approx-
imation as linear. These stresses will be compared with the
limit stresses or yield stresses. The deformations of the tube
will then be discussed.

It is usually assumed that stainless steel has equal yield
strength in tension and compression. Fused silica, on the
other hand, has a tensile strength that is significantly less than
its compressive strength. Exposed to air, a silica tube would
rapidly lose its strength and become most brittle. Fused sil-
ica tubes used as chromatographic columns fabricated are
sheathed with a layer of a cross-linked polymer that prevents
its weathering under the influence of atmospheric water and
ensures a long-term stability of the tensile strength of the
material.

Table 2
Typical tube geometries

Tube ps (MPa) Length,L (mm) Internal radius,r i (mm) External radius,re (mm) Mean radius,rm (mm) Thickness,t (mm) rm/t

SS-1 100 100 0.50 1.00 0.75 0.50 1.5
SS-2 100 100 2.30 3.15 2.73 0.85 3.2
SS-3 100 100 0.50 1.05 0.78 0.55 1.4
SS-4 100 100 2.69 3.18 2.93 0.48 6.1
SC-1 450 500 0.02 0.18 0.10 0.17 0.6
SC-2 680 500 0.05 0.18 0.12 0.13 0.9

Table 3
Table of assumed tube material properties

Tube Materials Elastic modulus (GPa) Poisson Pa)

SS-1,2,3,4 Stainless steel 210[8] 0.33
SC-1,2 Silica 73 0.17

a Based on the SiO bond strength, the fiber has a theoretical tensile streng lower,
typically 700 kpsi (4826 MPa), due to the presence of small flaws in the bulk a rally
100% proof tested at 100 kpsi (689 MPa)[11].
’s ratio (µ) Tensile strength (MPa) Compressive strength (M

942 942
4826 (689)a N/A

th of∼2000 kpsi. In practice the observed tensile strength is considerably
nd on the surface of the silica[10], when in practical use, the tubes are gene
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Fig. 2. Axis-symmetric model for the tube with wall and end pressures.

2. Theory

2.1. Analytical solution for the stresses in a pressured
tube

If the tube is long relative to its diameter, and the pressure
is assumed to be constant along the length of the tube, it can
be assumed that the response of every section along the length
is the same, and that all deformations act in a plane normal
to the axis of the tube. This is referred to as the plane strain
condition, and the stress components in thisr − θ plane are
shown inFig. 3, where ther − θ plane is normal to thez-axis
of the tube.

2.1.1. Stresses in the r− θ plane
From theory of elasticity, the cylinder subjected to an inter-

nal pressureps, Fig. 3, results in the following components

of stress:

σr = r2
i ps

r2
e − r2

i

(
1 − r2

e

r2

)
(1a)

σθ = r2
i ps

r2
e − r2

i

(
1 + r2

e

r2

)
(1b)

whereσr , σθ are the radial and tangential stress at distance
r from the axisz; σz is the stress component in the axial or
z-direction andr i , re are the initial internal and external radii.

The stress distribution in thez-direction is relatively sim-
ple. Suppose the pressure acting on the internal surface of
the end frit isps, the resulting stress along thez-direction is
uniform at any point in ther − θ plane:

σz = r2
i ps

r2
e − r2

i

(1c)

As suggested by Timoshenko and Goodier[5], the radial
stressσr is always compressive andσθ, sometimes referred
to as the hoop stress or circumferential stress, is tensile. The
hoop stressσθ is greatest at the inner surface of the cylinder,
where
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Fig. 3. Stress components on cross-section of the tube (r − θ plane).
θ = σθ max =
(r2

e − r2
i )

(2)

This maximum valueσθ max is always numerically great
han the internal pressureps but should diminish toward
s as re increases. Regardless of the thickness of the
θ max can never be less thanps, andσθ is the critical stres

o investigate in a pressurized tube.
The three stress components at the inner surface o

olumn (radiusr in,0) are principal stresses:

1 = σθ = r2
i ps

r2
e − r2

i

+ r2
eps

r2
e − r2

i

= σm + σs (3a)

2 = σz = r2
i ps

r2
e − r2

i

= σm (3b)

3 = σr = r2
i ps

r2
e − r2

i

− r2
eps

r2
e − r2

i

= σm − σs (3c)

hereσ1, σ2, σ3 are the major, the intermediate, and
inor principal stresses, respectively,σm the mean stress a

d is the deviator stress. The mean stress and the de
tresses can be re-written as:

m = r2
i ps

r2
e − r2

i

(4a)

s = r2
eps

r2
e − r2

i

(4b)
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Fig. 4. Circumferential stressσθ in thick- and thin-walled tubes.

2.1.2. Stress distributions in thick-walled and
thin-walled tubes

The distributions of the circumferential stress (σθ) across
the wall of a thick- and thin-walled tubes are depicted in
Fig. 4. Because the inside and outside radii of the thin-walled
tube are nearly the same (Fig. 4b), the difference in the
stresses at the inside and outside radii are not as great as
that for a thick-walled tube (Fig. 4a). In the notation used
for pressure vessel analysis, the circumferential stress in a
thin-walled tube is often taken as the average of the inside
and outside values ofσθ, and is referred to as the membrane
stress.

Thus, the circumferential stress in the thin-walled tube can
be calculated by average stress as:

σavg = psrm

t
(5)

whererm = (re + r i )/2 is the average radius of the tube, andt
is the thickness of the tube wall. Although there is no uni-
versally accepted division between thin- and thick-walled
vessels, the ASME pressure vessel code suggests that tubes
with rm/t≥ 10 can be treated as thin-walled tubes[6]. As
indicated inTable 2, the typical chromatography tubes con-
sidered here do not meet this criteria, sincerm/t is less than
10. Therefore, these typical tubes would be considered to
be thick-walled, where the maximum stress occurs at the
i wn in
F mn
t mp-
t

2

typ-
i the
s
t ly in
t e-
s sure
v ulting
s usu-

ally expressed as some fraction of the yield stress. In order
to determine the allowable design stress for multi-axial stress
conditions, several theories of failure have been developed.
Their purpose is to estimate when failure will occur under the
action of combined stresses on the basis of data obtained from
simple tension or compression tests. Failure of the tube refers
to either yielding or actual rupture of the material, whichever
occurs first.

There are numerous theories to predict the state of stress at
failure or the limit stress, among which three theories that are
most commonly used in pressure vessel design to assure that
the operating pressures are safe with respect to the anticipated
stresses at failure. These theories consider both the combined
state of stress and the uniaxial stress state. In this section,
the application of these theories to investigate the service
pressures in chromatography tubes will be discussed.

Even though the pressures in these tubes are high, it will be
shown subsequently that the dimensional changes are small
and as such, that the energy release upon failure would be
small and the consequences of failure be minimal (besides
the loss of the experimental data involved).

2.2.1. “Maximum stress” or Rankine theory
According to this theory, the failure of the tube is assumed

to occur when the maximum principal stress reaches the
yield stress in simple tension,σ =σ As discussed above,
f ress
s g to
E ing
i

σ

a

p

ate-
r the
s t
nside radius and diminishes across the thickness, as sho
ig. 4a. The following discussion of chromatographic colu

ube failure will be based on the thick-walled tube assu
ion.

.2. Failure theories for pressured tubes

The strength of most materials, particularly metals, is
cally determined in a simple uniaxial tension test, where
trength is often defined as the yield stress,σy.p. at which
he deformations are no longer recoverable, or alternate
erms of the ultimate stressσult, which is the stress corr
ponding to the ultimate strength. When tubes or pres
essels are designed for some internal pressure, the res
tress state is compared with stress at failure, which is
1 y.p.
or typical chromatographic columns, the maximum st
hould be calculated as in a thick-walled tube accordin
q. (3a). Thus, for a given internal pressure, the follow

nequality should be maintained:

max = σ1 = σm + σs = r2
i ps

r2
e − r2

i

+ r2
eps

r2
e − r2

i

≤ σy.p. (6a)

nd the maximum internal pressure inside the tube is:

s Rankine≤ σy.p.(r2
e − r2

i )

r2
e + r2

i

(6b)

The maximum stress theory is often appropriate for m
ials that fail in a brittle manner, or those for which
trength in tension and compression are vastly differen[7].
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This may be the case for chromatographic tubes made of sil-
ica, which may fail in a brittle manner and has different yield
strengths in compression and tension (Table 3).

2.2.2. “Maximum shear stress” or Tresca theory
This theory postulates that yielding in a body subject to

combined stresses will occur when the maximum shear stress
becomes equal to the maximum shear stress at yield in a sim-
ple tension test, which is the yield stressσy.p.. The maximum
shear stress in the tube is equal to one-half the difference of
the maximum and the minimum principal stress; thus, the
maximum shear stress in the chromatographic tube is:

τmax = σ1 − σ3

2
= σθ − σr

2
= r2

eps

r2
e − r2

i

≤ σy.p.

2
(7a)

and the corresponding maximum internal pressure inside the
tube is:

ps Tresca≤
σy.p.(r2

e − r2
i )

2r2
e

(7b)

For ductile materials such as steel, aluminum, and brass,
and those materials for which the tensile and compressive
strength are the same, the maximum shear stress theory
may give better agreement with experimental results than
t n
a tubes
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σ2 =σ3 = 0 in Eq.(9) which gives

Ud,tension= 1 + µ

3E
σ2

y.p. (10)

This theory has been widely used in pressure vessel design
to assure that the inner bore of the vessel remains elastic,
or below yield. In practice, the distortion energy stress is
calculated and compared to the yield strength of the tube
material. For the chromatography tube, substitution of Eq.
(3) into the above Eq.(9) yields:

Ud = 1 + µ

6E
[σ2

s + σ2
s + (2σs)

2] = 1 + µ

E
σ2

s (11)

To limit the distortion energy in Eq.(11) to values less
than the yield stress in simple tension, given in Eq.(10), we
must haveUd <Ud,tension, or:

σs = psr
2
i

r2
e − r2

i

≤ σy.p.√
3

(12a)

The corresponding maximum pressure in the tube is:

ps von Mises≤
σy.p.(r2

e − r2
i )

3
√

r2
i

(12b)
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he “maximum stress” theory[6–8]. Thus, this might be a
ppropriate theory for stainless steel chromatographic
Table 3).

.2.3. “Maximum distortion energy” or von
ises-Hencky theory
The maximum distortion energy, also known as the m

um octahedral shear stress theory, provides somewha
ccurate results that the maximum shear stress theor[7].
his theory assumes that the total strain can be resolve

wo parts:

The strain energy due to deformation in uniform ten
or compression.
The strain energy due to distortion or change in shap
the unit volume.

This can be written as:

= Uv + Ud (8)

hereUv is the energy of volume change per unit of v
me, andUd is the energy of distortion per unit of volum

t is further assumed that failure can be attributed only to
istortion strain energy. The calculation ofUd is:

d = 1 + µ

6E
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2] (9)

According to this theory, yielding begins when the d
ortion energy reaches the value of the distortion ener
he yield point in a simple tension test. In a simple tens
est, the yield point is obtained by substitutingσ1 =σy.p., and
.2.4. Application of the failure theory to the tubes of
hromatographic columns

For the design of pressurized tubes and vessels, the d
ions are selected such that the relevant stress in the
s below the stress at yield by a specified margin of sa
hich is commonly presented as a factor of safety:

S= stress or pressure at failure

stress or pressure under service
> 1.0 (13)

Typically, larger factors of safety are utilized to reflec
reater uncertainty in the service pressure, the material
rties, the theory of failure or in cases when the consequ
f failure is significant.Table 4summarizes the three yie

heories presented above, references the applicable s
n the ASTM pressure vessel code with the recomme
actor of safety[7]. Table 4also indicates the expression
he maximum internal pressure as a function of yield s
nd tube geometry. Note that as the complexity and relia
f the failure theory increases (Rankine theory versus T

heory versus von Mises theory), the recommended fac
afety decreases.

.3. Analytical solution for radial and axial
eformations

An analytical solution for the dimensional changes
hromatography column was derived earlier, based o
ssumption of linear elasticity, and the assumption tha

ube is long with respect to the diameter such that the effe
he ends are negligible on the deformations[1]. The solution
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Table 4
Summary of failure theories and maximum internal pressure

Basis Maximum internal
pressure,ps,max

Equation ASME code
section

Factor of safety

Theory of failure Material property

Maximum stress or
Rankine theory

Maximum stress in wall thickness
reaches material tensile strength

r2
e−r2

i
r2
e+r2

i
σy.p. (6) Section VIII-1

pressure vessels
4

Maximum shear stress
or Tresca theory

Average shear stress in wall thickness
reaches material ultimate shear stress

r2
e−r2

i
r2
e

σy.p.
2 (7) Section VIII-2

Pressure Vessels
3

Distortion energy or
von Mises-Hencky
theory

Material yield strength first reached
throughout wall thickness

r2
e−r2

i
r2
e

σy.p.√
3

(12) Section VIII-3
pressure vessels

1.5

assumes the superimposition of the axial and radial deforma-
tions due to the internal pressure as depicted inFig. 5. The
assumed boundary conditions lead to a simple 2D model for
the free end tube shown inFig. 6. Because changes in the tube
density due to the pressure can be neglected, and an axial (or
a radial) expansion is accompanied by a radial (or an axial)
constriction, the relative dimensional changes were obtained
as[2]:

L

L0
= 1 + �L

L0
= 1 + (1 − 2µ)r2

in,0

r2
ext,0 − r2

in,0

ps

E
(14a)

rin

rin,0
= 1 + �rin

rin,0
= 1 + [(1 + µ)r2

in,0 + (1 − µ)r2
in,0]

r2
ext,0 − r2

in,0

ps

E

(14b)

rext

rext,0
= 1 + �rext

rext,0
= 1 + 2r2

in,0

r2
ext,0 − r2

in,0

ps

E
(14c)

The glossary of the symbols used is given inTable 1. This
solution can be somewhat simplified when written in terms
of the notation from engineering mechanics as[5]:

�L = L0

E

r2
i ps

r2
e − r2

i

(1 − 2µ) (15a)

�r = r2
i ps[r2

e(1 + µ) + r2(1 − µ)]

rE(r2
e − r2

i )
(15b)

The systems of Eqs. (14) and (15) are equivalent.
Fig. 5. Superposition of radial and axial deformations in free end
 tube. Deformation caused by (a) side pressure and (b) end pressure.
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Fig. 6. Two-dimensional axis-symmetric model of the free end tube.

The analytical solution is based on a simplistic model for
the tube, one for which the cylinder is of infinite length or the
deformations are not affected by the end restraint. As shown
in Fig. 1, an actual chromatography column is restrained by
the end frits which tend to make the tube behave as if the
ends of the tube are thicker than the tube. The actual end
restraint depends on the stiffness of the cap and union system
used in the HPLC instrument. An analytical solution does not
exist for more realistic end conditions. However, numerical
approximations such as the finite element method can be used
to determine the deformation under such end conditions.

2.4. Finite element solution for radial and axial
deformations

More realistic boundary or end conditions can be inves-
tigated using numerical approximations such as the finite
element method. The degree of end restraint provided by the
frits can be considered to be bound by two limit conditions:

(a) The free end case investigated above by the analytical
solution, which provides the lower bound to the degree
of rigidity of end restraint.

(b) The completely fixed end restraint, which provides an
upper bound to the degree of rigidity of end restraint.

ndi-
t most

Fig. 7. Three conditions of end restraint (a) upper bound solution, (b) lower
bound solution and (c) intermediate assumed condition.

cases close to the second one due to the size and stiff-
ness of the unions generally used to connect the column
to the instrument.Fig. 7 illustrates schematically the free
end, the fully retrained or very rigid end, and the interme-
diate end restraint conditions. Each of these end restraints
can be investigated by the finite element method. The actual
finite element model (Fig. 8) used an axis-symmetry mesh
consisting of around 400 elements along one half of the
100 mm length, and two to four elements across the tube
thickness, where the roller supports at sections A and B
correspond to a line of symmetry at the midpoint of the
tube.

2.4.1. Free column end (no end restraint)
A finite element model for the free end condition (Fig. 8;

not to scale), was developed using the commercial finite ele-
ment code ABAQUS 6.4[9]. Because the end conditions are
the same as in the analytical solution, the results should be
comparable.

tube.
Actual chromatography tubes would have end co
ions that lie somewhere between these two bounds, in
 Fig. 8. Axis-symmetric finite element mesh for one-half the free end
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Fig. 9. Axis-symmetric finite element mesh for one-half the rigid-end tube.

The axial stress in the tube is the same as in the analytical
solution and

p′
e = r2

i

r2
e − r2

i

ps (16)

The analysis of the free end tube was also performed
with a linear variation of radial pressure, corresponding to
the actual condition in a chromatographic tube in which the
mobile phase flows at a constant flow rate and a pressure gra-
dient takes place across the length of the tube. An analytical
solution for this loading case does not exist, but the numeri-
cal solution can be easily obtained by changing the uniform
internal pressure,ps,Fig. 8, to a linearly varying pressure with
a maximum value ofps and a minimum value of 0. Because
the loading is no longer symmetrical, the entire length of the
tube should be modeled.

2.4.2. Rigid column end—(complete end restraint)
In the case of the complete end restraint, it is assumed that

the rigidity of the end plug is much larger than that of the tube
itself, and that no relative displacement takes place between
the tube end and the plug. Thus, the end of the tube is fixed
in the radial direction, such that there is no radius change and
n ains
f the
c date
f na-
l ent
c rical,
t

Fig. 10. Axis-symmetric finite element mesh for one-half the tube with a
cap.

2.4.3. Hindered column end (intermediate end restraint)
Here we assume that the tube end is connected to an end

cap that is not rigid enough to be considered as completely
un-deformable. Calculations were made in the (arbitrary but
reasonable) case in which the stiffness of both the tube and the
cap are equal (Kp/Kt = 1). This boundary condition is illus-
trated inFig. 10.

2.4.4. Comments
Because tubes used to pack chromatographic columns are

very long and thin, with a very large aspect ratio, (L/re, typ-
ically 20–100), the boundary conditions at the tube end do
not affect much its deformation at the center of the tube. This
result can be explained by a straightforward application of
the principle of Saint-Venant. The system of forces at the end
of the tube is a balanced one. It produces a local bending
that dies out rapidly as the distance along thez-axis from the
restrained end increases[5].

Even though the analytical solution for a tube having
free end (see analytical Eqs.(14a)–(14c)or (15a) and (15b))
neglects the rigidity of the column end, it can be used with
sufficient accuracy to predict the deformation of chromatog-
raphy tubes. It will be shown that it gives results that match
well with those of the numerical solution obtained via finite
element analysis, except in the regions close to the end
r

3

t the
i be
o rotation angle in the tube end but that the tube rem
ree to expand in thez-direction (the end unions connect
olumn to fine connecting tubes which can accommo
reely any axial deformation of the column). There is no a
ytical solution available in this case but the finite elem
an easily be carried out, using a quarter axis-symmet
wo-dimensional model,Fig. 9.
estraint.

. Results and discussion

In the cases investigated here, it was assumed tha
nternal pressurePwas uniform along the length of the tu
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Table 5
Stress components at the inner radius of typical chromatography tubes

Tube Principal stresses (MPa) Stress of interest (MPa)

σ1 σ2 σ3 Rankine (σθ max) Tresca (τmax) von Mises (σs)

SS-1 166.7 33.3 −100.0 166.7 133.3 33.3
SS-2 328.4 114.2 −100.0 328.4 214.2 114.2
SS-3 158.7 29.3 −100.0 158.7 129.3 29.3
SS-4 612.0 256.0 −100.0 612.0 356.0 256.0
SC-1 456.3 3.1 −450.0 456.3 453.1 3.1
SC-2 793.7 56.9 −680.0 793.7 736.9 56.9

Table 6
Calculated maximum internal pressure and factor of safety for typical tubes according to different theories of failure

Tube Maximum internal pressure (MPa) Factor of safety

ps Rankine ps Tresca ps Von Mises FSRankine(4)* FSTresca(3)* FSVon Mises(1.5)*

SS-1 565 353 1630 5.65 3.53 16.30
SS-2 287 220 476 2.87 2.20 4.76
SS-3 594 364 1850 5.94 3.64 18.50
SS-4 154 132 212 1.54 1.32 2.12
SC-1 4760 2400 398000 10.60 5.32 885.00
SC-2 4130 2230 33300 6.08 3.27 49.00

∗ Recommended value from[7].

to facilitate the solution. In practice, the energy loss across
the tube length results in linear pressure gradient fromPmax
(which is in the kbar range) at the column inlet to 0 at the
outlet. The numerical analysis was repeated to investigate the
effect of the pressure gradient with a pressure ofps=Pmax
at the column inlet and a pressure of 0 at the outlet. The
results indicate that the maximum radial deformation,�r,
which occurs at the middle portion of the column, and length
change of the tube,�L, are both smaller in the case of the lin-
early varying pressure than with the uniform pressure. Thus,
the uniform pressure distribution results in an overestima-

tion (or conservative estimation) of the tube deformations.
However, the effect of the linearly varying pressure may be
more significant in an analysis of the stresses in the region
near the connection between the column end and the frit, but
this analysis requires details of the frit and geometry of the
connection and is beyond the scope of this paper.

Thus, the comparative analysis of the stresses and defor-
mations in chromatographic tubes with both a uniform pres-
sure and a linear pressure gradient across the column shows
that the uniform pressure is the worst case, Accordingly, this
case will be considered for the remainder of the paper.

Table 7
Relative radius and length change of the chromatography tube (analytical, free end case)

Tube Deformation Strain

�r i (mm) �re (mm) �L (mm) �r i /r i �re/re �L/L

SS-1 0.000472 0.000278 0.005567 0.000944 0.000278 0.000056
SS-2 0.003722 0.002998 0.019070 0.001618 0.000952 0.000191
SS-3 0.000455 0.000257 0.004897 0.000911 0.000244 0.000049
SS-4 0.007540 0.006775 0.042753 0.002800 0.002134 0.000428
SC-1 0.000109 0.000014 0.014226 0.007291 0.000079 0.000028
SC-2 0.000616 0.000257 0.257021 0.012324 0.001425 0.000514

Table 8
Computed deformation at points A– C (Fig. 8) from analytical and FE solutions of the free end tube

T al radiu

l

S 10−4

S 10−3

S 10−4

S 10−3

S 10−5

S 10−4
ube Internal radius change, point A (mm) Extern

Analytical FEM Analytica

S-1 4.72167× 10−4 4.72167× 10−4 2.77833×
S-2 3.72209× 10−3 3.72209× 10−3 2.99817×
S-3 4.55464× 10−4 4.55464× 10−4 2.56649×
S-4 7.53950× 10−3 7.53950× 10−3 6.77478×
C-1 1.09368× 10−4 1.09368× 10−4 1.41996×
C-2 6.16196× 10−4 6.16196× 10−4 2.56554×
s change, point B (mm) Length change, point C (mm)

FEM Analytical FEM

2.77833× 10−4 5.56667× 10−3 5.56667× 10−3

2.99817× 10−3 1.90703× 10−2 1.90703× 10−2

2.56649× 10−4 4.89736× 10−3 4.89736× 10−3

6.77478× 10−3 4.27526× 10−2 4.27526× 10−2

1.41996× 10−5 1.42255× 10−2 1.42255× 10−2

2.56554× 10−4 2.57021× 10−1 2.57021× 10−1
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3.1. Computed stresses in typical chromatographic
columns

As indicated inTable 2, it is assumed that the stainless
steel tubes are subjected to an internal pressure of around
100 MPa, while the silica tubes are subjected to internal pres-
sures of 450 and 680 MPa.Table 5presents the calculated
principal stresses and stress components (σθ max), (τmax) and
(σz) inside each tube using Eq. (1), where positive stresses
indicate tension. It is noteworthy that the maximum tensile
stress in tube SS-4 has a value ofσθ = 612.0 MPa which is
more than six times the internal pressure. This tube is the
thinnest withrm/t= 6.1 which is approaching therm/t= 10
for “thin” tubes. Tube SS-2 (rm/t= 3.2) has aσθ more than
three times the internal pressure.

3.2. Comparison of the maximum allowable internal
pressure and the factor of safety according to different
theories of failure

The designs of most structures are based on formu-
las that are known to be approximate and use materials
whose mechanical properties cover a relative band, due to
the uncertain reproducibility of the properties of the sam-
ple and their environmental behavior not being thoroughly
k ans
o g to
a ance.
T s are
b

rs of
s om-
p tor
o ively
i as in
T

aphy
t n
t e
o

F

the
c ng to
t -
p s.
T
t e ten-
s kine
a ises
t s (or
s have
h est
f Ta

bl
e

9
C

om
pa

ris
on

of
de

fo
rm

at
io

n
at

po
in

ts
A

–C
be

tw
ee

n
fr

ee
en

d
(

F
ig

.8
),

in
te

rm
ed

ia
te

en
d

(F
ig

.9
)

an
d

re
st

ric
te

d
en

d
(F
ig

.1
0)

,F
E

so
lu

tio
n

T
ub

e
In

te
rn

al
ra

di
us

ch
an

ge
,p

oi
nt

A
(m

m
)

E
xt

er
na

lr
ad

iu
s

ch
an

ge
,p

oi
nt

B
(m

m
)

Le
ng

th
ch

an
ge

,p
oi

nt
C

(m
m

)

F
re

e
en

d
In

te
rm

ed
ia

te
en

d
R

es
tr

ic
te

d
en

d
F

re
e

en
d

In
te

rm
ed

ia
te

en
d

R
es

tr
ic

te
d

en
d

F
re

e
en

d
In

te
rm

ed
ia

te
en

d
R

es
tr

ic
te

d
en

d

S
S

-1
4.

72
16

7×
10

−4
4.

72
16

5×
10

−4
4.

72
16

7×
10

−4
2.

77
83

3×
10

−4
2.

77
83

2×
10

−4
2.

77
83

2×
10

−4
5.

56
66

7×
10

−3
5.

45
15

4×
10

−3
5.

59
26

4×
10

−3
S

S
-2

3.
72

20
9×

10
−3

3.
72

26
5×

10
−3

3.
72

25
9×

10
−3

2.
99

81
7×

10
−3

2.
99

86
7×

10
−3

3.
00

36
1×

10
−3

1.
90

70
3×

10
−2

1.
64

87
7×

10
−2

2.
10

27
6×

10
−2

S
S

-3
4.

55
46

4×
10

−4
4.

55
46

3×
10

−4
4.

55
46

0×
10

−4
2.

56
65

0×
10

−4
2.

56
64

9×
10

−4
2.

56
64

1×
10

−4
4.

89
73

6×
10

−3
4.

79
53

0×
10

−3
5.

21
14

6×
10

−3
S

S
-4

7.
53

95
0×

10
−3

7.
53

23
1×

10
−3

7.
53

95
1×

10
−3

6.
77

47
8×

10
−3

6.
76

76
2×

10
−3

6.
77

48
0×

10
−3

4.
27

52
6×

10
−2

4.
07

90
6×

10
−2

4.
51

17
0×

10
−2

S
C

-1
1.

09
36

8×
10

−4
1.

09
36

8×
10

−4
1.

09
36

8×
10

−4
1.

41
99

6×
10

−5
1.

41
99

6×
10

−5
1.

41
99

6×
10

−5
1.

42
25

5×
10

−2
1.

42
26

6×
10

−2
1.

42
89

5×
10

−2
S

C
-2

6.
16

19
6×

10
−4

6.
16

19
6×

10
−4

6.
16

19
6×

10
−4

2.
56

55
4×

10
−4

2.
56

55
4×

10
−4

2.
56

55
4×

10
−4

2.
57

02
1×

10
−1

2.
57

15
6×

10
−1

2.
58

14
2×

10
−1
nown. The use of factors of safety is a trade-off me
f establishing equal reliability and safety by assignin
single parameter varying degrees of quality assur

his is the basis upon which many codes and standard
ased.

The ASME pressure vessel code has several facto
afety based on different theories of failure, but with c
arable safety and reliability. It permits lowering the fac
f safety as the degree of quality insurance is success

ncreased or more refined failure theories are adopted
able 4.

The stress components for each of the six chromatogr
ubes defined inTable 2were calculated inTable 5, based o
he three failure theories summarized inTable 4. For purpos
f comparison, the factor of safety was defined as:

S= maximum internal pressure at failure

assumed service pressure
(17)

Table 6reports for each of the six tubes considered,
omputed maximum allowable internal pressure accordi
he three failure theories (Table 4). Also shown is the com
uted FS according to Eq.(16)for each of the failure theorie
he yield stress for the materials was taken as inTable 3. For

he silica tubes, the maximum pressures are based on th
ile strength of the silica. It can be seen that the Ran
nd Tresca theories give similar results, while the von M

heory provides much larger maximum internal pressure
maller factors of safety). Tubes SS-2 and SS-4, which
igherrm/t ratios (thinner tubes), are operating at the low

actor of safety.



78 F. Chen et al. / J. Chromatogr. A 1083 (2005) 68–79

Fig. 11. Effect ofrm/t to axial strain of the tubes.

3.3. Computed dimensional change in typical
chromography columns

Table 7lists the computed radial and length change for
each of the tubes from the analytical solution (free end condi-
tion). The maximum internal radial change does not exceed
0.01 mm (maximum value 0.0075 mm for SS-4) while the
maximum length change occurs in SC-2 and is 0.257 mm
due to the relative long length of this tube. The maximum
relative internal radial strain (�r i /r i ) is 0.012324, the maxi-
mum relative external radial strain (�re/re) is 0.001425, and
the maximum relative axial strain (�L/L) is 0.000514. It can
be concluded that the changes in radius and length of the
tubes are very small at points A, B, and C (Fig. 8).

Table 8compares the radial and axial deformations for the
free end conditions of the chromatographic columns evalu-
ated with both the analytical and the finite element analysis.
The results are in excellent agreement (the relative differences
are less than 1× 10−6).

Table 9compares the deformation at points A–C calcu-
lated for the boundary conditions with restricted, intermedi-
ate and free ends for the six tubes. The results show that the
end restriction does not affect significantly either the defor-
mation of the tube radius at the mid point of the column or its
length change. Note, however, that the end restriction causes
both a slight increase in the length expansion (about 5%)
and a slight decrease in the radius change.Fig. 11presents
the relative axial strain (�L/L) for different rm/t ratio and
Fig. 12 the relative internal (�r i /r i ) and external (�re/re)
radial strains for differentrm/t ratio of the four stainless
steel and two silica tubes. As shown in these two figures, for
the four stainless steel tubes (which have the same length),
under equal internal pressure, both the axial and the radial
strain increase with increasingrm/t ratio. Combined with the
zero change in the radii at both ends, these effects com-
bine to keep constant the volume occupied by the metal.
It can be concluded that the analytical solution, although
it is approximate in the chromatographic tube case, can be

l and e
Fig. 12. Effect ofrm/t to interna
 xternal radial strain of the tubes.
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used to accurately predict the dimensional changes in these
tubes.

Because the deformations and strains in all of the tubes
are small, the energy stored in the deforaiation is also very
small. The energy stored by compression of the liquid is also
relatively small[1]. Thus, if a tube was to fail, The released
strain energy would be moderate and of little consequence.

4. Conclusions

The stress components inside the wall of typical chro-
matographic column tubes were investigated through the
principles of engineering mechanics, and the relevant stress
quantities calculated for typical stainless steel and silica
tubes. These stresses were compared with the yield stresses
based on three well-known failure theories. The calculated
stresses are expressed in terms of a safety factor, or ratio of
the maximum internal pressure to service pressure. Based
on the typical tube dimensions and operating pressures iden-
tified here, both the stainless steel and the silica tubes are
safe when the von Mises failure theory is assumed. When
the less rigorous Rankine and Tresca failure theories are
used, the desired levels of safety are not achieved with the
selected operating pressures above which failure would be
expected.

of
c sim-
p ent
m This
n t of

various levels of end restraint. It is suggested that because
most chromatographic tubes are very long with respect to
their diameter, the effects of end restraint are very local-
ized, and the expressions for free end tubes are appropriate.
It is also shown that the deformations in typical chromatog-
raphy columns under the assumed operating pressures are
small.
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